Chapter 8

Pacemaker Rhythms

Objectives

- Define the following terms: sensitivity, capture, asynchronous, synchronous, threshold.
- Identify the components of a pacemaker system.
- Describe a unipolar and bipolar pacing electrode.
- Explain the differences between fixed-rate and demand pacemakers.

Objectives

- Describe the primary pacing modes.
- Identify the cardiac chamber(s) stimulated by different pacing methods.
- Describe the appearance of a typical pacemaker spike on the ECG.
- Describe the appearance of the waveform on the ECG as a result of atrial pacing and ventricular pacing.
- Describe the benefits of AV sequential pacing.

Objectives

- Identify the primary indications for transcutaneous pacing.
- Describe the procedure for transcutaneous pacing.
- List three types of pacemaker malfunctions.
- Identify possible complications of transcutaneous pacing.
- Describe how to analyze pacemaker function on the ECG.

Key Terms

- Sensing
- Capture
- Asynchronous
- Synchronous
- Threshold

Pacemaker Systems

- Pacemaker
 - An artificial pulse generator that delivers an electrical current to the heart to stimulate depolarization

Pacemaker Systems

 Consist of a pulse generator (power source) and pacing lead(s)

Permanent Pacemaker

- Implanted in the body, usually under local anesthesia
- Pacemaker wires are surrounded by plastic catheters
- The pacemaker's circuitry is housed in a hermetically sealed case made of titanium that is airtight and impermeable to fluid

Temporary Pacemakers

- Transvenous pacemaker
- Epicardial pacing
- Transcutaneous pacing (TCP)

Pacemaker Electrodes—Unipolar

- One pacing electrode located at distal tip
- Negative electrode in contact with heart
 - Pulse generator (located outside the heart) functions as positive electrode
 - Pacemaker spikes are often large due to distance between positive/negative electrodes

Pacemaker Electrodes—Bipolar

- Contains a positive and negative electrode at the distal tip of pacing lead wire
- Pacer spike is often small and difficult to see

Pacemaker Modes

Fixed-Rate (Asynchronous) Pacemakers

 Continuously discharge at a preset rate (usually 70-80/min) regardless of patient's heart rate

- Does not sense patient's own cardiac rhythm
 - May result in competition between the patient's cardiac rhythm and that of the pacemaker
- Not often used today

Demand (Synchronous, Noncompetitive) Pacemakers

- Discharge only when patient's heart rate drops below pacemaker's preset (base) rate
- Can be programmable or nonprogrammable
 - Voltage level and impulse rate are preset at time of manufacture in nonprogrammable pacemakers

Pacemaker Identification Codes

 Five-letter coding system used to assist in identifying a pacemaker's preprogrammed pacing, sensing, and response functions

Pacemaker Identification Codes

Chamber Paced	Chamber Sensed	Response to Sensing	Programmable Functions	Antitachycardia Functions
O = None	O = None (fixed-rate pacemaker)	O = None (fixed-rate pacemaker)	O = None	O = None
A = Atrium	A = Atrium	T = Triggers pacing	P = Simple programmability (rate and/or output)	P = Pacing (antitachycardia)
V = Ventricle	V = Ventricle	I = Inhibits pacing	M = Multi- programmable	S = Shock
D = Dual chamber (atrium & ventricle)	D = Dual chamber (atrium & ventricle)	D = Dual (triggers & inhibits pacing)	C = Communication R = Rate responsive	D = Dual (pacing & shock)

Single-Chamber Pacemakers

A single chamber (either the atrium or ventricle)
 pacemaker has one lead placed in the heart

Atrial Pacing

- Pacing electrode placed in the right atrium
 - Produces pacemaker spike followed by a P wave
- May be used when SA node is diseased or damaged but conduction through AV junction and ventricles is normal

Ventricular Pacing

- Pacing electrode placed in right ventricle
- Produces pacemaker spike followed by a wide QRS, resembling a ventricular ectopic beat

Dual-Chamber Pacemakers

 A dual-chamber pacemaker paces both the atrium and ventricle

- Two-lead system placed in the heart
 - One lead is placed in the right atrium
 - A second lead is placed in the right ventricle

AV Sequential Pacemaker

- Type of dual-chamber pacemaker
- Stimulates right atrium and right ventricle sequentially
 - Mimics normal cardiac physiology
 - Preserves atrial kick

Dual-Chamber Pacemakers

- Also called DDD pacemakers
 - Both atrium and ventricle are paced (D)
 - Both chambers are sensed (D)
 - Has both a triggered and inhibited mode of response (D)

Transcutaneous Pacing (TCP)

- Recommended as the initial pacing method of choice in emergency cardiac care
 - Effective
 - Quick
 - Safe
 - Least invasive pacing technique currently available

TCP—Indications

- Significant bradycardia unresponsive to atropine therapy or when atropine is not immediately available or indicated
- "Bridge" until transvenous pacing can be accomplished or cause of the bradycardia is reversed
 - Drug overdose
 - Hyperkalemia

TCP—Electrical Capture

- Observe for electrical capture
 - Usually indicated by wide QRS and broad T wave

TCP—Limitations

- Patient discomfort
 - Proportional to intensity of skeletal muscle contraction and direct stimulation of cutaneous nerves
 - Degree of discomfort varies with:
 - Device used
 - Stimulating current required to achieve capture

Pacemaker Malfunction

Failure to Pace

Also called "failure to fire"

- Pacemaker malfunction that occurs when:
 - Pacemaker fails to deliver an electrical stimulus
 - Pacemaker fails to deliver the correct number of electrical stimulations per minute

Failure to Pace

- Recognized on the ECG as an absence of pacemaker spikes and a return of the underlying rhythm for which the pacemaker was implanted
- Signs and symptoms may include:
 - Syncope
 - Chest pain
 - Bradycardia
 - Hypotension

Failure to Pace—Causes

- Battery failure
- Fracture of the pacing lead wire
- Displacement of the electrode tip
- Pulse generator failure
- Broken or loose connection between the pacing lead and the pulse generator
- Electromagnetic interference
- Sensitivity setting set too high

Failure to Pace— Possible Interventions

- Adjusting sensitivity setting
- Replacing pulse generator battery
- Replacing pacing lead
- Replacing pulse generator unit
- Tightening connections between pacing lead and pulse generator
- Performing an electrical check
- Removing source of electromagnetic interference

Failure to Capture

- Capture
 - Successful depolarization of atria and/or ventricles by an artificial pacemaker
- Failure to capture
 - Inability of pacemaker stimulus to depolarize myocardium

Failure to Capture

 Recognized on the ECG by visible pacemaker spikes not followed by P waves (if electrode in atrium) or QRS complexes (if electrode in right ventricle)

Failure to Capture—Causes

- Battery failure
- Fracture of pacing lead wire
- Displacement of pacing lead wire (common cause)
- Perforation of myocardium by a lead wire
- Edema or scar tissue formation at electrode tip
- Output energy (mA) set too low (common cause)
- Increased stimulation threshold because of:
 - Medications
 - Electrolyte imbalance
 - Increased fibrin formation on catheter tip

Failure to Capture—Possible Interventions

- Repositioning the patient
- Slowly increasing the output setting (mA) until capture occurs or maximum setting is reached
- Replacing pulse generator battery
- Replacing or repositioning the pacing lead
- Surgery

Failure to Sense (Undersensing)

Sensitivity

Extent to which a pacemaker recognizes intrinsic electrical activity

Failure to sense

Occurs when the pacemaker fails to recognize spontaneous myocardial depolarization

Failure to Sense (Undersensing)

 Recognized on the ECG by pacemaker spikes that follow too closely behind the patient's QRS complexes

Failure to Sense (Undersensing) —Causes

- Battery failure
- Fracture of pacing lead wire
- Displacement of the electrode tip
 - Most common cause
- Decreased P wave or QRS voltage
- Circuitry dysfunction
 - Generator unable to process QRS signal
- Increased sensing threshold from edema or fibrosis at the electrode tip, antiarrhythmic medications
- Severe electrolyte disturbances
- Myocardial perforation

Failure to Sense—Possible Interventions

- Increasing sensitivity setting
- Replacing pulse generator battery
- Replacing or repositioning pacing lead

Oversensing

- Pacemaker malfunction that results from inappropriate sensing of extraneous electrical signals
 - Atrial sensing pacemakers may inappropriately sense ventricular activity
 - Ventricular sensing pacemakers may misidentify a tall, peaked intrinsic T wave as a QRS complex

Oversensing

- The patient with a pacemaker should avoid strong electromagnetic fields
 - Arc welding equipment
 - Magnetic resonance imaging (MRI)

Oversensing— Possible Interventions

- Adjustment of pacemaker's sensitivity setting
- Possible insertion of a bipolar lead if oversensing is due to unipolar lead dysfunction

Pacing – Possible Complications

Complications of Transcutaneous Pacing

- Coughing
- Skin burns
- Interference with sensing
- Pain from electrical stimulation of the skin and muscles
- Failure to recognize that the pacemaker is not capturing
- Tissue damage, including third-degree burns
- Pacing threshold changes

Complications of Temporary Transvenous Pacing

- Bleeding
- Infection
- Pneumothorax
- Cardiac dysrhythmias
- Myocardial infarction
- Lead displacement

- Fracture of pacing lead
- Hematoma at insertion site
- Perforation of right ventricle
- Perforation of major vessel

Complications of Permanent Pacing

- Complications associated with implantation procedure:
 - Bleeding
 - Local tissue reaction
 - Pneumothorax
 - Cardiac dysrhythmias
 - > Air embolism
 - > Thrombosis

Complications of Permanent Pacing

- Long-term complications of permanent pacing
 - Infection
 - Electrode displacement
 - Congestive heart failure
 - Fracture of the pacing lead
 - Pacemaker-induced dysrhythmias
 - Externalization of the pacemaker generator
 - Perforation of the right ventricle

Analyzing Pacemaker Function on the ECG

Identify Intrinsic Rate and Rhythm

- Are P waves present? At what rate?
- Are QRS complexes present? At what rate?

Is There Evidence of Paced Activity?

- If paced atrial activity is present, evaluate the paced interval
 - Paced interval: time measured between two paced beats

- Using calipers or paper, measure distance between two consecutive paced atrial beats
 - Determine rate and regularity of the paced interval

Is There Evidence of Paced Activity?

- If paced ventricular activity is present, evaluate the paced interval
 - Using calipers or paper, measure distance between two consecutive paced ventricular beats
 - Determine rate and regularity of the paced interval

Evaluate the Escape Interval

- Escape interval
 - Time measured between the last beat of the patient's own rhythm and the first paced beat
- Compare the escape interval to the paced interval measured earlier
 - The paced interval and the escape interval should measure the same

Analyze the Rhythm Strip

- Analyze the rhythm strip for:
 - Failure to capture
 - Failure to sense
 - Oversensing
 - Failure to pace

Questions?