Chapter 8

Pacemaker Rhythms
Objectives

- Define the following terms: sensitivity, capture, asynchronous, synchronous, threshold.
- Identify the components of a pacemaker system.
- Describe a unipolar and bipolar pacing electrode.
- Explain the differences between fixed-rate and demand pacemakers.
Objectives

- Describe the primary pacing modes.
- Identify the cardiac chamber(s) stimulated by different pacing methods.
- Describe the appearance of a typical pacemaker spike on the ECG.
- Describe the appearance of the waveform on the ECG as a result of atrial pacing and ventricular pacing.
- Describe the benefits of AV sequential pacing.
Objectives

- Identify the primary indications for transcutaneous pacing.
- Describe the procedure for transcutaneous pacing.
- List three types of pacemaker malfunctions.
- Identify possible complications of transcutaneous pacing.
- Describe how to analyze pacemaker function on the ECG.
Key Terms

- Sensing
- Capture
- Asynchronous
- Synchronous
- Threshold
Pacemaker Systems

- Pacemaker
 - An artificial pulse generator that delivers an electrical current to the heart to stimulate depolarization
Pacemaker Systems

- Consist of a pulse generator (power source) and pacing lead(s)
Permanent Pacemaker

- Implanted in the body, usually under local anesthesia
- Pacemaker wires are surrounded by plastic catheters
- The pacemaker’s circuitry is housed in a hermetically sealed case made of titanium that is airtight and impermeable to fluid
Temporary Pacemakers

- Transvenous pacemaker
- Epicardial pacing
- Transcutaneous pacing (TCP)
Pacemaker Electrodes—Unipolar

- One pacing electrode located at distal tip
- Negative electrode in contact with heart
 - Pulse generator (located outside the heart) functions as positive electrode
 - Pacemaker spikes are often large due to distance between positive/negative electrodes
Pacemaker Electrodes—Bipolar

- Contains a positive and negative electrode at the distal tip of pacing lead wire
- Pacer spike is often small and difficult to see
Pacemaker Modes
Fixed-Rate (Asynchronous) Pacemakers

- Continuously discharge at a preset rate (usually 70-80/min) regardless of patient’s heart rate

- Does not sense patient’s own cardiac rhythm
 - May result in competition between the patient’s cardiac rhythm and that of the pacemaker

- Not often used today
Demand (Synchronous, Noncompetitive) Pacemakers

- Discharge only when patient’s heart rate drops below pacemaker’s preset (base) rate

- Can be programmable or nonprogrammable
 - Voltage level and impulse rate are preset at time of manufacture in nonprogrammable pacemakers
Pacemaker Identification Codes

- Five-letter coding system used to assist in identifying a pacemaker’s preprogrammed pacing, sensing, and response functions
Pacemaker Identification Codes

<table>
<thead>
<tr>
<th>Chamber Paced</th>
<th>Chamber Sensed</th>
<th>Response to Sensing</th>
<th>Programmable Functions</th>
<th>Antitachycardia Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>O = None</td>
</tr>
<tr>
<td></td>
<td>(fixed-rate pacemaker)</td>
<td>(fixed-rate pacemaker)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = Atrium</td>
<td>A = Atrium</td>
<td>T = Triggers pacing</td>
<td>P = Simple programmability (rate and/or output)</td>
<td>P = Pacing (antitachycardia)</td>
</tr>
<tr>
<td>V = Ventricle</td>
<td>V = Ventricle</td>
<td>I = Inhibits pacing</td>
<td>M = Multi-programmable</td>
<td>S = Shock</td>
</tr>
<tr>
<td>D = Dual chamber (atrium & ventricle)</td>
<td>D = Dual chamber (atrium & ventricle)</td>
<td>D = Dual (triggers & inhibits pacing)</td>
<td>C = Communication R = Rate responsive</td>
<td>D = Dual (pacing & shock)</td>
</tr>
</tbody>
</table>
Single-Chamber Pacemakers

- A single chamber (either the atrium or ventricle) pacemaker has one lead placed in the heart
Atrial Pacing

- Pacing electrode placed in the right atrium
 - Produces pacemaker spike followed by a P wave

- May be used when SA node is diseased or damaged but conduction through AV junction and ventricles is normal
Ventricular Pacing

- Pacing electrode placed in right ventricle
- Produces pacemaker spike followed by a wide QRS, resembling a ventricular ectopic beat
Dual-Chamber Pacemakers

- A dual-chamber pacemaker paces both the atrium and ventricle

- Two-lead system placed in the heart
 - One lead is placed in the right atrium
 - A second lead is placed in the right ventricle
AV Sequential Pacemaker

- Type of dual-chamber pacemaker
- Stimulates right atrium and right ventricle sequentially
 - Mimics normal cardiac physiology
 - Preserves atrial kick
Dual-Chamber Pacemakers

- Also called DDD pacemakers
 - Both atrium and ventricle are paced (D)
 - Both chambers are sensed (D)
 - Has both a triggered and inhibited mode of response (D)
Transcutaneous Pacing (TCP)

- Recommended as the initial pacing method of choice in emergency cardiac care
 - Effective
 - Quick
 - Safe
 - Least invasive pacing technique currently available
TCP—Indications

- Significant bradycardia unresponsive to atropine therapy or when atropine is not immediately available or indicated

- “Bridge” until transvenous pacing can be accomplished or cause of the bradycardia is reversed
 - Drug overdose
 - Hyperkalemia
TCP—Procedure
TCP—Procedure
TCP—Procedure
TCP—Procedure
TCP—Procedure
TCP—Electrical Capture

- Observe for electrical capture
 - Usually indicated by wide QRS and broad T wave
TCP—Procedure
TCP—Procedure
TCP—Limitations

- Patient discomfort
 - Proportional to intensity of skeletal muscle contraction and direct stimulation of cutaneous nerves
 - Degree of discomfort varies with:
 - Device used
 - Stimulating current required to achieve capture
Pacemaker Malfunction
Failure to Pace

- Also called “failure to fire”

- Pacemaker malfunction that occurs when:
 - Pacemaker fails to deliver an electrical stimulus
 - Pacemaker fails to deliver the correct number of electrical stimulations per minute
Failure to Pace

- Recognized on the ECG as an absence of pacemaker spikes and a return of the underlying rhythm for which the pacemaker was implanted.

- Signs and symptoms may include:
 - Syncope
 - Chest pain
 - Bradycardia
 - Hypotension
Failure to Pace—Causes

- Battery failure
- Fracture of the pacing lead wire
- Displacement of the electrode tip
- Pulse generator failure
- Broken or loose connection between the pacing lead and the pulse generator
- Electromagnetic interference
- Sensitivity setting set too high
Failure to Pace—Possible Interventions

- Adjusting sensitivity setting
- Replacing pulse generator battery
- Replacing pacing lead
- Replacing pulse generator unit
- Tightening connections between pacing lead and pulse generator
- Performing an electrical check
- Removing source of electromagnetic interference
Failure to Capture

- Capture
 - Successful depolarization of atria and/or ventricles by an artificial pacemaker

- Failure to capture
 - Inability of pacemaker stimulus to depolarize myocardium
Failure to Capture

- Recognized on the ECG by visible pacemaker spikes not followed by P waves (if electrode in atrium) or QRS complexes (if electrode in right ventricle)
Failure to Capture—Causes

- Battery failure
- Fracture of pacing lead wire
- Displacement of pacing lead wire (common cause)
- Perforation of myocardium by a lead wire
- Edema or scar tissue formation at electrode tip
- Output energy (mA) set too low (common cause)
- Increased stimulation threshold because of:
 - Medications
 - Electrolyte imbalance
 - Increased fibrin formation on catheter tip
Failure to Capture—Possible Interventions

- Repositioning the patient
- Slowly increasing the output setting (mA) until capture occurs or maximum setting is reached
- Replacing pulse generator battery
- Replacing or repositioning the pacing lead
- Surgery
Failure to Sense (Undersensing)

- **Sensitivity**
 - Extent to which a pacemaker recognizes intrinsic electrical activity

- **Failure to sense**
 - Occurs when the pacemaker fails to recognize spontaneous myocardial depolarization
Failure to Sense (Undersensing)

- Recognized on the ECG by pacemaker spikes that follow too closely behind the patient’s QRS complexes
Failure to Sense (Undersensing) —Causes

- Battery failure
- Fracture of pacing lead wire
- Displacement of the electrode tip
 - Most common cause
- Decreased P wave or QRS voltage
- Circuitry dysfunction
 - Generator unable to process QRS signal
- Increased sensing threshold from edema or fibrosis at the electrode tip, antiarrhythmic medications
- Severe electrolyte disturbances
- Myocardial perforation
Failure to Sense—Possible Interventions

- Increasing sensitivity setting
- Replacing pulse generator battery
- Replacing or repositioning pacing lead
Oversensing

- Pacemaker malfunction that results from inappropriate sensing of extraneous electrical signals
 - Atrial sensing pacemakers may inappropriately sense ventricular activity
 - Ventricular sensing pacemakers may misidentify a tall, peaked intrinsic T wave as a QRS complex
Oversensing

- The patient with a pacemaker should avoid strong electromagnetic fields
 - Arc welding equipment
 - Magnetic resonance imaging (MRI)
Oversensing—
Possible Interventions

- Adjustment of pacemaker’s sensitivity setting
- Possible insertion of a bipolar lead if oversensing is due to unipolar lead dysfunction
Pacing – Possible Complications
Complications of Transcutaneous Pacing

- Coughing
- Skin burns
- Interference with sensing
- Pain from electrical stimulation of the skin and muscles
- Failure to recognize that the pacemaker is not capturing
- Tissue damage, including third-degree burns
- Pacing threshold changes
Complications of Temporary Transvenous Pacing

- Bleeding
- Infection
- Pneumothorax
- Cardiac dysrhythmias
- Myocardial infarction
- Lead displacement

- Fracture of pacing lead
- Hematoma at insertion site
- Perforation of right ventricle
- Perforation of major vessel
Complications of Permanent Pacing

- Complications associated with implantation procedure:
 - Bleeding
 - Local tissue reaction
 - Pneumothorax
 - Cardiac dysrhythmias
 - Air embolism
 - Thrombosis
Complications of Permanent Pacing

- Long-term complications of permanent pacing
 - Infection
 - Electrode displacement
 - Congestive heart failure
 - Fracture of the pacing lead
 - Pacemaker-induced dysrhythmias
 - Externalization of the pacemaker generator
 - Perforation of the right ventricle
Analyzing Pacemaker Function on the ECG
Identify Intrinsic Rate and Rhythm

- Are P waves present? At what rate?
- Are QRS complexes present? At what rate?
Is There Evidence of Paced Activity?

- If paced atrial activity is present, evaluate the paced interval
 - Paced interval: time measured between two paced beats

- Using calipers or paper, measure distance between two consecutive paced atrial beats
 - Determine rate and regularity of the paced interval
Is There Evidence of Paced Activity?

- If paced ventricular activity is present, evaluate the paced interval
 - Using calipers or paper, measure distance between two consecutive paced ventricular beats
 - Determine rate and regularity of the paced interval
Evaluate the Escape Interval

- **Escape interval**
 - Time measured between the last beat of the patient’s own rhythm and the first paced beat

- **Compare the escape interval to the paced interval measured earlier**
 - The paced interval and the escape interval should measure the same
Analyze the Rhythm Strip

- Analyze the rhythm strip for:
 - Failure to capture
 - Failure to sense
 - Oversensing
 - Failure to pace
Questions?